Name	Adm No:
233/1	Candidate's Signature
CHEMISTRY	Date:
PAPER 1,THEORY	
SEPTEMBER, 2021	
TIME: 2 HOURS	

MOMALICHE FORM IV

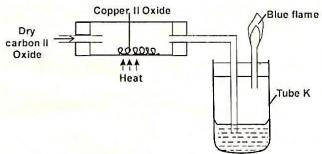
Kenya Certificate of Secondary Education (K.C.S.E.)

233/1

Chemistry

Paper 1

2 Hours

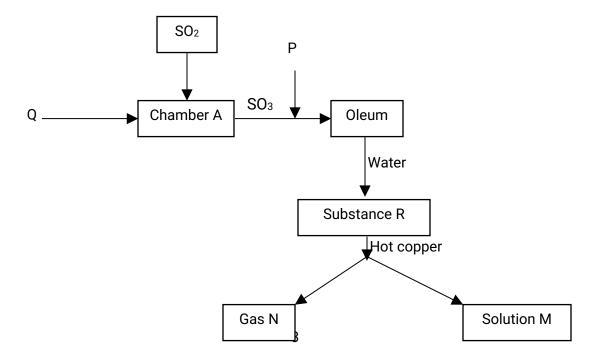

INSTRUCTIONS TO CANDIDATES

- Write your **name** and **admission number** in the spaces provided above
- **Sign** and write the **date** of examination in the spaces provided.
- Answer **all** the questions in the spaces provided.
- Mathematical table and silent electronic calculators may be used.
- All working must be clearly shown where necessary.

FOR EXAMINERS USE ONLY

Question	Maximum score	Candidate's score
1-27	80	

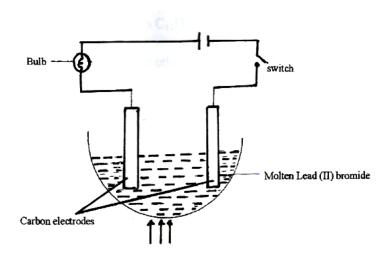
1. The apparatus shown below was used to investigate the effect of carbon(II) oxide on copper(II)oxide.



		Heat Tube K	
	a)	State the observation that was made in the combustion tul experiment.	oe by the end of the
	••••	experiment.	(1 mark)
	b)	Write an equation for the reaction that took place in the co	mbustion tube. (1mark)
	c)	Why is it necessary to burn gas coming out of tubeK?	(1mark)
2.Nar	me the	e process which takes place when:	
(1mk	• •	odine changes directly from solid to gas	
••••••	(ii) T	The process of hardening rubber by heating it together with su	ulphur(1mk)
aaid	(iii) \	White sugar changes to black solid when mixed with excess o	concentrated sulphuric (VI)
acid			(1mk)
3.A s ¹	tudent	t was asked to prepare dry lead (II) sulphate salt using the fol	lowing reagents; dilute
		cid, lead (II) carbonate and magnesiumsulphate solution. Des 3 mks	cribe how the salt can be

4.In a reaction 20cm³ of 0.1M sodium carbonate completely reacted with 12.5cm³ of dilute sulphuric (VI) acid. Find the concentration of suphuric (VI) acid in moles per litres. (3mks)

effervescence wh dissolved in meth	arbonate is placed in ile there is no efferve ylbenzene .Explain th	scence when placed	, ,	•
(2mk)				
••••••				


6.Study the chart below for the Contact process and other extensions.

a) Identify the substances:	(2 mks)
Q	
P	
R	
N	
b) Name solution M and state its colour.	(1 mk)
	(TIIK)
Name Colour	
7. Use the reaction scheme below to answer the questions that follow.	
H _{2(g)}	
$\begin{array}{c c} \hline \text{Ethano} & \hline \text{Process} \\ \hline \text{Conc. H}_2\text{SO}_4 & \hline \\ \hline \end{array}$	Compound M
Conc. H ₂ SO ₄ Ni _(S)	
a) Give one necessary condition for process P	(1
mark)	(.
many	••
b) Name the Process P.	(¹ / ₂ mark)
b) Name the Flocess F.	(/2 IIIdik _,
	/a1,
(c) Draw and name the structure of compound M	$(1^{1}/_{2}$
mark)	
Quite the hand energies given below to enewer the guestions that follow	
8. Use the bond energies given below to answer the questions that follow.	
Bond Bong energy (KJ /mole)	
C – H 414 Cl – Cl 244	
C – Cl 326	
H – Cl 431	
a) Calculate the heat change for the reaction.(3mks)	
$CH_4(g) + CI_2(g)$ \longrightarrow $CH_3CI_{(g)} + HCI_{(g)}$	
b) State the condition necessary for the above reaction to occur.	(1 mk)

9.	Using	dots (.) and crosses (x) to represent electrons, show:		
	(a)bon	nding in sodium chloride	(1 mk)	
	(b) the	estructure of an ion illustrated by the formula $^{27}_{13}$ Al $^{3+}$	(1 mk)	
10.On	were p	ete combustion of a hydrocarbon; 1.257g of carbon (IN produced. If the relative molecular mass of the hydroca	-	r
	molec (4mks	ular formula of the hydrocarbon (<i>C=12, H=1,O=16)</i>) 		
				· • • • • •
				· • • • • •
	•••••			•••••
				· • • • • •
	•••••			
11. Be		a diagram of set-up of apparatus that is used to invest t on a binary electrolyte, lead (II) bromide.	tigate the effect of electric	
	i)	Explain what is meant by a 'binary electrolyte'.	(1mark)	

•••••		

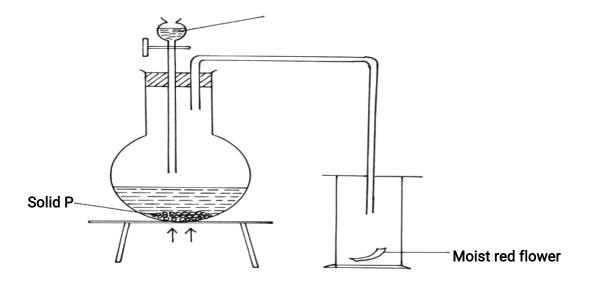
ii)	ii) State the importance of heating in the above experiment.		(1mark)	
iii)	Give an observation made at the cathode	(1 mark)		
12.a) (i) Nan	ne the following organic compounds.		(2marks)	
a)	CH ₃ - CH=C - CH ₂ - CH ₂ -CH ₃ CH ₃			
			•••••	

		CH ₃ CH ₂ CH ₂ CH ₃	
ii) Descrit	oe one	chemical test that can be used to distinguish between sub	ostances (a) and (b) above (1 mark)
13. (a)	Define	the term solubility.	(1mk)
		t W were added to 60cm ³ of water at 25 ⁰ C.After stirring 500 etermine the solubility of salt W at 25 ⁰ C.	g of crystals of salt W wei (2mks)
14.	Temp	orary water hardness can be removed by boiling	
14. a)	•	orary water hardness can be removed by boiling is hard water?	(1 mk)
	•		(1 mk)
a) b) N	What		(1 mk) (1

15. (a) (1mark)	State Graham's law.
	set-up below shows laboratory preparation of hydrogen gas, use it to answer the sthat follow.
Dilute	Sulphuric

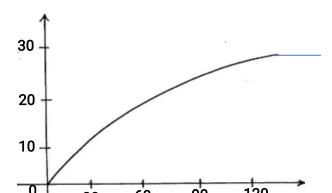
a) Identify **two** mistakes in the set-up

Zinc granules


(2 mks)

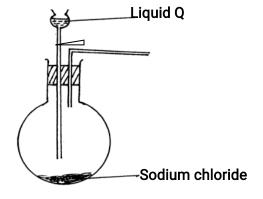
Conc. H₂SO₄

b)	Why is itnot advisable to use potassium metal as an alternative of zinc for the prepara of hydrogen gas?	ntion mks)
	apparatus below was set up to show the catalytic oxidation of ammonia. Study the iagram and answer the questions that follow	
	Dry NH _{3(g)} Hot platinum wire	
(1mk)	(i) Write an equation for the reaction that takes place in the gas jar	
(1mk)	(ii) What is the role of hot platinum wire?	
	(iii) Write the formula of the complex ion formed when excess ammonia gas is passe through a solution containing Zn ²⁺ ions. (1mk)	d


18. The diagram below shows the set-up that was used to prepare and collect sulphur (iv) oxide gas.

.....

(a)I	(a)Identify solid P	
(b)	(i) Why is it possible to collect sulphur (IV) Oxide as shown?	(1mk)
••••••	(ii) What happened to the red flower?	(1mk)
19. Hyc	19. Hydrogen sulphide gas was passed through a solution of iron(III) chloride (i) State and explain the observations made	
(1mk)	(ii) Write an ionic equation for the reaction taking place in (i) above	


20. A Certain mass of a metal reacted with excess dilute hydrochloric acid at **25**⁰C. The volume was recorded after every 30secs. The results were presented as shown below.

Time (sec.)

(a) Name one piece of apparatus that may be used to measure the volume of the gas liberated.
(1mk)
(b)(i) On the same axis, sketch the curve that would be obtained if the experiment was repeated a $35^{0}\mathrm{C}$
(1mk)
(ii) Explain how increase in temperatureaffects the rate of a chemical reaction. (2mks)
01 The set on helessone weed to make a declarate and the set of th

21. The set up below was used to prepare dry hydrogen chloride gas.

(a) Complete ti (2marks)	the diagram to show how dry hydrogen chloride gas is col	lected.
(b) Identify liqu	rid Q	(1mark)
(c) Write a bala	anced equation for the reaction that produces hydrogen	chloride gas in the above (1mark)
	re atomic mass of an element R is 10.28; it has two isoto centage abundance of each isotope.	opes ¹⁰ R and ¹¹ R.Calculate (3marks)
a) On th	sketch of a reaction profile. Enter Reactants Reaction Course he diagram show the heat of reaction ΔH d explain the type of reaction represented by the profile	(1mk)
		

 ${\bf 24.\ Describe\ how\ you\ would\ obtain\ oil\ from\ groundnuts.}$

(2mks)

	•••••
25. State any two differences between luminous and non-luminous flames (2r	nks)
	••••••
26.A sample of water is suspected to contain some dissolvedchloride ions. Describe a che test for establishing the presence of the chloride ions in the water sample. (2mks)	mical
	•••••
	••••••
	••••••
	••••••
27.Sketch a graph of temperature against time for a pure substance A with a melting point of and boiling point of 80°C and it is heated from 0°C to 90°C.	10 ⁰ C
3marks)	