Name	Index noAdm. NoIndex no		
Class:	Candidate's Sign		
Date:			

CHEMISTRY 233/3 PAPER 3 (PRACTICAL) SEPTEMBER 2021 TIME: 2 ¼ HOURS

MOMALICHE SCHOOLS KCSE TERM I MOCK SEPTEMBER 2021 MOMALICHE 3 CYCLE 8

INSTRUCTIONS TO CANDIDATES

- Fill in your details above.
- Write your answers in ENGLISH
- Answer all the questions in the spaces provided in the question paper.
- You are not allowed to start working with the apparatus for the first 15 minutes of the 2 ¼ hours allowed for this paper.
- All working must be clearly shown.
- Mathematical tables and electronic calculators may be used.

FOR EXAMINER'S USE ONLY:

Question	Maximum Score	Candidate's Score
1.	15	
2.	11	
3.	14	
TOTAL	40	

This paper consists of 8 printed pages. Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing

Question 1.

You are provided with:

- Hydrochloric acid, solution A
- 0.4M Sodium hydroxide, Solution B
- 0.1g of divalent metal C

You are required to determine;

- (i) Molar enthalpy change for the reaction between metal **C** and hydrochloric acid.
 - (ii) the Molarity of Acid A.

Procedure I

Using a measuring cylinder, place 100cm^3 of acid A in a 250ml plastic beaker. Record its temperature as T_1 . put metal C into the beaker and stir using the thermometer. Record the highest temperature attained as temperature T_2 in table I below.

(Label this solution as F and preserve it for procedure II)

Table I

Final temperature (°C) T ₂	
Initial temperature (°C) T ₁	

 $(1^{1}/_{2}mks)$

(a) Determine the temperature change, ΔT°C

 $(^{1}/_{2}mk)$

- (b) How many moles of **C** were used in the experiment (C=24.0) (1mk)
 - (c) i) Calculate the enthalpy change for the reaction.

(1mk)

 $(s.h.c = 4.2kJkg^{-1}k^{-1}, density of solution=1g/cm^3)$

ii) Calculate the molar enthalpy change for the reaction (1mk)

Procedure II

Fill the burette with solution F. Pipette 25cm³ of solution B into a conical flask. Add 3 drops of phenolphthalein indicator. Run the solution in the burette into the conical flask until the pink colour just disappears. Record your readings in the table II below. Repeat the above procedure to obtain concordant results and complete the table.

Table II

		I	II	III
Final burette readings	(cm ³)			
Initial burette readings	(cm ³)			
Volume of solution F used	(cm ³)			

(4mks)

- (a)Determine the average volume of solution F used (1mk)
 - (b) Calculate:
 - (i) The number of moles of solution B used.(1mk)

(ii) The number of moles of hydrochloric acid in solution F that reacted with 25cm ³ of solution B. (1mk)
(iii) The number of moles of hydrochloric acid in 100cm ³ of solution F. (1mk)
(iv) The initial number of moles of hydrochloric acid in 100cm ³ of solution A . (1mk)
(v) The molarity of Hydrochloric acid, solution A . (1mk)
Question 2 You are provided with: (a) Sodium thiosulphate containing 40g/litre, solution D. (b) 2M Hydrochloric acid, solution E. You are required to:

Determine the rate of reaction between sodium thiosulphate and Hydrochloric

acid.

Procedure:

Into a 100ml glass beaker, place 20cm³ of **D**. Using a pencil, Mark a cross (X) on a white paper. Place a beaker containing solution **D** on the cross X. Add 20cm³ of solution **E** into solution **D** and at the same time start a stop watch.

Shake the beaker and immediately place it on the cross. Observe the cross (X) through the solution (from the top) and record the time (t) in seconds taken for the cross to be longer visible.

Repeat the procedure using the other solutions of E diluted with water as indicated in the table III below.

Table III (5mk)

Experiment	1	2	3	4	5
Volume of solution D (cm ³)	20	20	20	20	20
Volume of solution E (cm ³)	20.0	17.5	15.0	12.5	10.0
Volume of water (cm ³)	0.0	2.5	5.0	7.5	10.0
Time taken for X to disappear					
1/time (SeC ⁻¹)					

(a) Plot a graph of 1/time (y-axis) against volume of solution E. (3mks)

(b) (i) From the graph, determine the time taken for the cross (X) to be
invisible at 16.5cm³ of solution E .
(1mk)

- (ii) If the volume of solution E in b (i) above was diluted using 3.5cm³ of water, what would be the concentration of E in the mixture in moles/litre.

 (1mk)
- (c) Explain the shape of the graph. (1mk)

Question 3.

Procedure:

You are provided with solid **G** and **H**. Carry out the tests and record your observation and inferences in spaces provided.

(a) Place all solid **G** in a clean boiling tube. Add about 10cm³ of distilled water and shake well. Divide the solution into 4 portions.

Observations	Inferences
(1mk)	(1mk)
(ii) To the second portion	on add aqueous ammonia dropwise till in excess
Observations	Inferences
(1mk)	(1mk)
`	(1mk) drops of dilute hydrochloric acid, solution E.
`	
To the third portion add 3 Observations	drops of dilute hydrochloric acid, solution E. Inferences
To the third portion add 3 Observations (1/2mks) (iv) To the fourth portio	drops of dilute hydrochloric acid, solution E.
To the third portion add 3 Observations (1/2mks)	drops of dilute hydrochloric acid, solution E. Inferences (1/2mks)

Inferences

Observations

(1mk)	(1mk)
(TITIK)	(TITIK)

- II. Put the remaining solid **H** in a clean boiling tube tube. Add about 8ml distilled water and shake well. Divide the solution into three portions.
- (i) Determine the pH of the solution using universal indicator paper.

Observations	Inferences
(¹ / ₂ mks)	(¹ / ₂ mks)

(ii) To the second portion, add 2drops of acidified Potassium Manganate (VII) solution.

Observations	Inferences
(1mk)	(1mk)

(iii) To the third portion add sodium hydrogen carbonate solid.

Observations	Inferences
(1mk)	(1mk)

END