SECTION I

1. Jane mistypes $(x + y)^2$ as $x^2 + y^2$. Find the percentage error in the evaluation of $(x + y)^2$ when

$$(x+y)^2 = (12-2)^2 = 100$$

 $x^2+y^2 = (12^2+(-2)^2=148)$ m

2. An arc length a cm subtends angle of
$$0.39^{c}$$
 at the centre of a circle of radius 6cm. find the value of a

 $0 = 57.3 \times 0.39$
 $0 = 22.347$
 $0.39 = 0$
 $0.39 = 0$
 $0.39 = 0$
 $0.39 = 0$
 $0.39 = 0$
 $0.39 = 0$
 $0.39 = 0$
 $0.39 = 0$
 $0.39 = 0$
 $0.39 = 0$
 $0.39 = 0$
 $0.39 = 0$

$$\& 51, 52, 63, 63, 65, 71, 76, 83, 95 \text{ (3mks)}$$

$$Q_1 = \underbrace{52+63}_{2} = 57.5 \text{ M}$$

$$Q_3 = \underbrace{76+83}_{2} = 79.5 \text{ M}$$

$$4. \text{ Solve the equation.}$$

$$Q_{3} = \underbrace{76+83}_{2} = 79.5 \text{ M}$$

$$Q_{3} = \underbrace{76+83}_{2} = 11 \text{ A}$$

$$Q_{3} = \underbrace{76+83}_{2} = 11 \text{ A}$$

$$Q_{3} = \underbrace{76+83}_{2} = 11 \text{ A}$$

$$\log(3x - 1) = \log(2x + 1) - \log 4$$

$$3\alpha - 1 = \frac{2\alpha + 1}{4} m$$

$$12\alpha - 4 = 2\alpha + 1$$

$$10\alpha = 5m$$

$$\alpha = \frac{1}{2} A$$

5. Rationalize the denominator

$$\frac{\sqrt{5} + \sqrt{3}}{\sqrt{7} - \sqrt{3}}$$

$$\frac{\sqrt{5} + \sqrt{3}}{\sqrt{7} - \sqrt{3}}$$

$$\sqrt{7} + \sqrt{3}$$

$$\sqrt{7} - \sqrt{3}$$

$$\sqrt{7} + \sqrt{3}$$

$$\sqrt{7} - \sqrt{3}$$

6. (i) Write down the first 4 terms in a seconding power of x in the expansion of

$$1 - 5(2x)^{5}$$

$$1 - 5(2x) + 10(2x)^{2} - 10(2x)^{3} + --- M_{1}$$

$$1 - 10x + 40x^{2} - 80x^{3} + --- A_{1}$$

$$1-22 = 0.96$$

 $0.04 = 22$
 $0.02 = x$

(ii) Use your expansion to estimate the value of
$$(0.96)^5$$
 (2mks)
$$1-2x=0.96$$

$$0.04=2x$$

$$1-0.2+0.016-0.00064$$

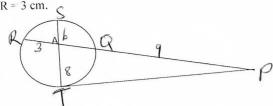
$$0.8153.6$$

7. Make q the subject of the formula

$$T = \left(\frac{b - q}{q}\right)^{\frac{1}{2}}$$

$$T^{2} = \frac{b - q}{q} m_{1}$$

$$T^{2} q = b - q$$


$$T^{2} q + q = b m_{1}$$

$$q \left(T^{2} + 1\right) = b$$

(3mks)

$$2 = \frac{b}{T^2 + 1} A_1$$

In the figure below, PT is a tangent to the circle of T. PQ = 9cm, SA =6cm, AT = 8 cm and AR = 3 cm.

Calculate the length of

9. Solve the simultaneous equations

$$x^2 + xy = 4$$

$$\gamma^2 + \chi \left(2 + \chi \right) = 4$$

$$\chi^2 + 2x + \chi^2 = 4$$

(mks)

(2mks)

(2mks)

$$x^2+x-2=0$$

$$x^{2}-x+2x-2=0$$

 $x(x-1)+2(x-1)=0$

$$(x+2)(x-1)=0$$

$$x = -2$$
 or $|A|$

$$y = 2 + x$$

$$y = x^{2} + x = 2$$

$$x^{2} + x =$$

10. An arithmetic progressive whose first term is 2 and the nth term 32 has the sum of n terms equal to 357. Find n. (3mks)

$$a = 2$$
 $c = 32$
 $c = 32$

h = 2 |A|11. PQR is a triangle of area 9cm^2 . If PQ is the fixed base of the triangle and is 6cm long. On the upper side of PQ.

Draw ΔP QR and describe the locus of point R

(3mks)

R7 1s a line parallel to PQ, 3cm away. B

12. Use matrix method to solve.

$$b = 4a + 6$$

$$3a - 2b = -2$$

$$4a - b = -6$$

$$3q - 2b = -2$$

$$4 - 1$$

$$3 - 2$$

$$4 - 1$$

$$3 - 2$$

$$det = -8 + 3 = -5 \qquad (3mks)$$

$$-\frac{1}{5} \begin{pmatrix} -2 & 1 \\ -3 & 4 \end{pmatrix} \begin{pmatrix} 4 & -1 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} 9 \\ 5 \end{pmatrix} = -\frac{1}{5} \begin{pmatrix} -2 & 1 \\ -3 & 4 \end{pmatrix} \begin{pmatrix} -2$$

13. State the amplitude and the period of the wave
$$y = 3 \sin \frac{3}{4} \theta$$
 (2mks)
Amplify $le = 3 \beta_1$
 $le = 360 \times \frac{4}{3} = 480^{\circ} \beta_1$

14. Find the centre and radius of the circle whose equation is $4x^2 - 12x + 4y^2 - 8y - 3 = 0$

$$\chi^{2} - 3x + y^{2} - 2y - \frac{3}{4} = 0$$

$$\chi^{2} - 3x + \left(\frac{-3}{2}\right)^{2} + y^{2} - 2y + \left(\frac{-2}{2}\right)^{2} = \left(\frac{3}{4}\right)^{2} + \frac{9}{4} + \frac{1}{1} = \frac{1}{1} = \frac{3}{1} = \frac{$$

15. Twenty men can dig a trench 300m long in 15 days. Find the number of days it would take 30 men to dig a trench 360m long. (3mks)

Men Trench Days
30 360

$$\frac{30}{300} \times \frac{12}{360} \times 15^{\circ} = 12 \text{ days} A_1$$

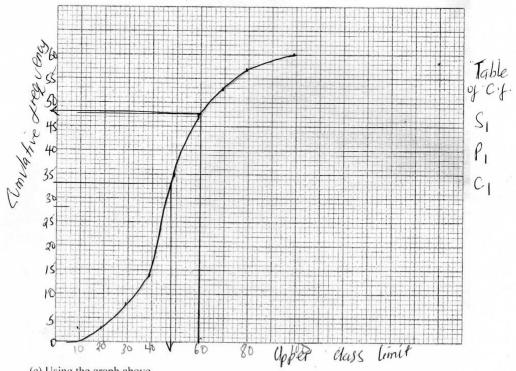
16. Use logarithms to evaluate
$$\frac{1.76\sqrt[3]{0.2876}}{379.5}$$

(3mks)

SECTION II

17. The table below shows the marks scored by students in a mathematics test.

Marks	10-19	20-29	30-39	40-49	50-59	60-69	70-79	80-89	90-99
No of students	3	5	6	21	12	6	4	2	1
C-1	3	8	14	35	47	55	57	59	br.


(a) From the table above, determine the 25th percentile

(2mks)

Pas

$$\frac{35 \times 60}{39.5} \times (\frac{1}{21} \times 10) = 39.98$$

(b) On the grid provided, draw an Ogive curve that represents the above information. (4mks)

- (c) Using the graph above

(i) Determine the pass mark if 45% of the students passed. (2mks)
$$45 \times 60 = 27$$
 passed 100 Pass mark $= 48+1$ $= 49$ A₁
(ii) If the pass mark was to be pegged at 60%. How many students passed? (2mks)

18. Three qualities P, Q and R are such that P varies directly as Q inversely as the square root of

Give that P = 2250 when Q = 450 and R = 64

(a) Write down an equation connecting P, Q, & R

(4mks)

(b) If Q decreased by 16% and R increased by 44%.

Calculate the percentage change in

(3mks)

$$P_{1} = 0.84P$$
 $R_{1} = \sqrt{1.44}R$
 $P_{1} = \frac{K.0.84P}{1.2\sqrt{R}}$
 $= 0.84P$

$$P_1 = 0.840$$
 $R_1 = \sqrt{1.44R}$
 $P_1 = \frac{1.44R}{1.2\sqrt{R}}$
 $P_2 = \frac{1.2\sqrt{R}}{1.2\sqrt{R}}$
 $P_3 = \frac{1.2\sqrt{R}}{1.2\sqrt{R}}$
 $P_4 = \frac{1.2\sqrt{R}}{1.2\sqrt{R}}$

Decrease of 30%

(c) In a soccer competition the number of goals (G) scored in a penalty shoot-out is partly constant and partly varies as he skill (S) of the player. Given that when S= 1 and G= 6 when S=2 G=4.find the value G when S=3(3mks)

$$H = C + 2M$$

$$2 = -m$$

19. The cost of a minibus was sh 950000. It depreciated in value by 5% per year for the first two years and by 15% per year for subsequent years.

(a) Calculate the value of the minibus after 5 years.

15t 248

GSD OND (1-5)

MI 857375 (1-15)

MI 950,000,00953

Sh 857375 AT 526535 AT 526535 AT

(b) After 5 years, the minibus was sold through a dealer at 25% more than its value to Mr. Nyeri. If the dealer's sale price was to be taken as its value after depreciation, calculate the average monthly rate of depreciation for the 5 years. (6mks)

125 x 576535 = 5h 658/68,75

658168.75 = 950 000 (1-1)5 016928 = (1-1)5 \$10.6928 = 1-15 019292 = 1-15 To = 6,07077 r= 7,077pia Reite per month = 7.077 = 0.58975

- 20. A trader deals in two types of rice . Type P & Q . Type P costs ksh 1600 per bag and type Q sh 1400 per bag
- (a) The trader mixes 30 bags of type P & 50 bags of type Q. If he sells the mixture at a profit of 20%,

Calculate the selling price of one bag of the mixture

(b) The trader now mixes type P with type Q in the ration x:y respectively. If the cost of the mixture is ksh 1534 per bag, find the ration.

$$\frac{2}{y} = \frac{67}{33}$$

2:4 = 67:33 A

(c) The trader mixes one bag of the mixture in part (a) with one bag of the mixture in part (b) above.

Calculate the ration of type P rice to type Q rice in this mixture. (2mks)

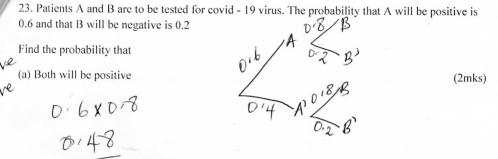
Total =
$$50 + 33 = 0.955$$

 $1045 = 0.955$

Momaliche schools cycle 3 2021

under a transformation given by matrix $P = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$	$\binom{1}{1}$		
Determine the co-ordinates of D', A' and Y' $ \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 4 & 0 & -2 \\ 4 & 2 & 4 \end{pmatrix} = 3$	\[\begin{aligned} \ 8 \\ 12 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$ \begin{array}{cccc} A' & Y' \\ 2 & Q \\ 2 & 2 \end{array} $	$\begin{array}{c} (3mks) \\ D' \left(12, 8\right) \\ A' \left(2, 2\right) \\ Y' \left(0, 2\right) \end{array}$

21. A point D' A' and Y' are images DAY with vertices D (4, 4) A (0,2) and Y(-2,4) respectively


(b) Triangle D' A' Y'' is the image of triangle D' A' Y' under another transformation whose matrix is $Q = \begin{pmatrix} -1/2 & 0 \\ 0 & -1/2 \end{pmatrix}$

Determine the coordinates of D" A" Y"
$$B''$$
 A'' Y'' B'' A'' Y'' B'' A'' Y'' B'' A'' A'

(c) Find a single matrix of transformation that maps D" A" Y" onto triangle D A Y (2ml)
$$\begin{pmatrix} QP \\ -\frac{1}{2} \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = \begin{bmatrix} -1 \\ -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} \begin{pmatrix} 4 \\ -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{bmatrix} -2 & 2 \\ 2 & -4 \end{bmatrix}$$

(d) A plane figure whose area is 20cm² undergoes transformation represented by QP. Find the area of image. (2mks)

$$\begin{aligned}
\mathbf{OP} &= \begin{bmatrix} -1 & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{4} \end{bmatrix} \\
\mathbf{del} &= \frac{1}{2} - \frac{1}{4} = \frac{1}{2} \\
\frac{1}{2} &= \frac{\text{Area of Image}}{20} \\
\text{Area of Image} &= 10 \text{ cm}^2 \text{ V}
\end{aligned}$$

(b) Neither will be positive
$$O : H \times O : Q = O : D$$
 (2mks)

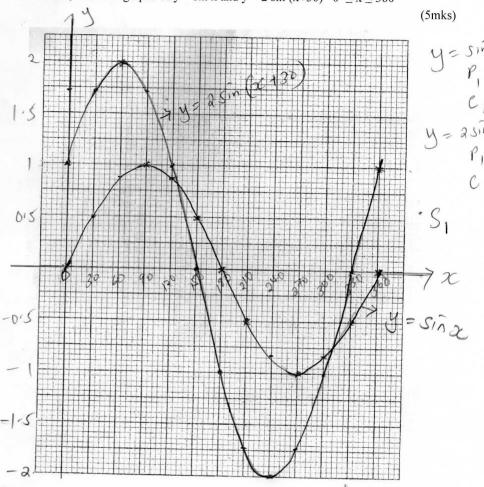
(c) One will be positive
$$\begin{pmatrix}
0.6 \times 0.2 & + & 0.4 \times 0.8 \\
0.12 + 0.32 & = 0.44
\end{pmatrix}$$
(2mks)

(d) At least one will be positive

one or Bit

$$0.44+0.48=0.92$$

(2mks)


e) At least B is negative. (2mks)
$$0.12 + 0.08$$

$$0.2$$

24. (a) Complete the table below

X	0	30	60	90	120	150	180	210	240	270	300	330	360	Bi	an
Sin x	0	015	0.87	1	0.87	05	0	70.5	-0.87	-1	1/18.	-0.5	n	(
$2 \sin(x+30)$	1	1.73	2	1.73	1	0	-1	-117	3 -2	-10	-1	0	1	Ba	9

(b)On the same axes, draw the graphs of $y = \sin x$ and $y = 2 \sin (x+30)$ $0^0 \le x \le 360^0$

(c) From the graph, find the roots of

raph, find the roots of
$$\chi = 126^{\circ} \text{ or } 306^{\circ}$$

 $2 \sin (x + 30) - \sin x = 0$

(1mk)

(d) Describe fully the transformation that maps the graph of

Stretch scale parallel to the y-axis scale jactor 2, (2mks) followed by translation
$$\begin{pmatrix} -30 \\ 0 \end{pmatrix}$$
.