

Kenya Certificate of Secondary Education 2020

233/3-

CHEMISTRY

-Paper 3

(PRACTICAL)

233/3-Chemistry-P3

Wed 16 /12/2020

DEC. 2020

- 2 1/4 Hours

Time8:00am-Session

THE MASENO SCHOOL MOCK

Name	Index Number	
Candidate's Signature		

INSTRUCTIONS TO CANDIDATES

- a) Answer all the questions in this question paper.
- b) You are not allowed to start working with the apparatus for the first 15 minutes of the 2 1/4 hours allowed time for the paper.
- c) Use 15 minutes to read through the question paper and make sure that you have all the chemicals and apparatus that you may require.
- d) Mathematical table and silent electronic calculators may be used.
- e) All workings must clearly be shown where necessary.

For Examiner's use only:

Question	Maximum Score	Candidate's Score
1	17	
2	07	
2	07	
3	16	
Total score	40	

QUESTION 1 (17 MARKS)

You are provided with;

- Solution A containing 2g of sodium hydroxide in 250cm³ of solution i)
- ii) Solution **B** which is sulphuric (vi) acid
- Solid C iii)

You are required to;

- Standardize solution B. i)
- ii) Determine the mass of **solid** C that reacts with the standardized solution **B**.

Procedure

- Fill the burette with solution **B**
- Transfer 25cm³ of solution B into a 250cm³ volumetric flask. Add distilled water up to the mark. Shake the mixture. Label it solution as **D**.
- Drain the burette and rinse it thoroughly
- Fill the burette with solution A.
- Pipette 25cm³ of solution **D** into a conical flask
- Add 2-3 drops of phenolphthalein indicator.
- Titrate solution **A** against **D** until **pink colour** just appears.
- Repeat the above procedure and fill the table 1 below.

Table 1

Experiment	I	II		III
Final burette reading (cm ³)				
Initial burette reading (cm ³)				
Volume of solution A used (cm ³)				
		'	-	(3marks)

١.	_	1 1	1		. 1	
a'	` '	`O.I.	CII	19te	the	•
а.	, .	aı	Cui	ıaıc	the	•

(i) Average volume of solution A used (show your working) (1mark)

(ii) Molarity of sodium hydroxide solution A (Na =23, O=16, H=1)

(1mark)

(iii) Number of moles of solution A used for titration. (1mark)

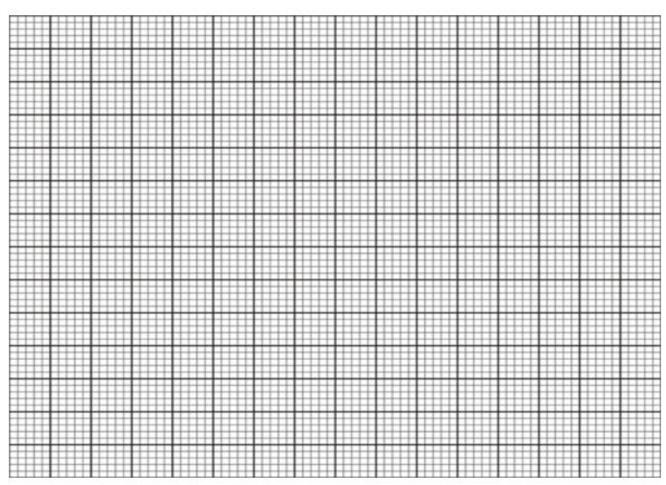
(iv)Molarity of the original solution B. (2marks)

PROCEDURE II

- Rinse the burette thoroughly and fill it with solution B.
- Transfer **50cm³** of solution into a **100 cm³** beaker.
- Add all the **solid** C provided to solution B.
- Swirl the mixture until there is no more effervescence.
- Label the mixture as **solution E**.
- Rise the burette thoroughly and fill it with solution E.
- Pipette **25.0cm**³ of solution **A** into a conical flask.
- Add 2 or 3 drops of phenolphthalein indicator
- Titrate solution E against solution A until the solution turns just colourless.
- Repeat the titration and fill the table II below.

Table II

Tubic II			
Experiment	I	II	III
Final burette reading (cm ³)			
Initial burette reading (cm ³)			
Volume of solution E used (cm ³)			
	·		(3mark


Ofullic	of solution E used (cm)			
a) Ca (i)	alculate the ; Average volume of solution E u	used (show your v	working)	(3marks) (1mark)
(ii)	Moles of sulphuric (vi) acid pre	esent in 50cm3 of	solution B.	(1mark)
(iii)	Number of moles of solution A	used for the titra	tion.	(1mark)
(iv)	Moles of sulphuric (vi) acid in s	solution E used fo	or the titration.	(1mark)
(v)	Number of moles of sulphuric (vi) acid that reac	ted with solid C .	(1mark)

mass of C is 10	6, calcul	ate the n	nass of s	olid C use	ed in this	experime	ent.	(1mark)	
			OUEST	ΓΙΟΝ 2 (7	MKS)				
						~			
You are provided with the enthalpy change	_	-		trate labele	ed solid (G. You ar	e require	ed to detern	nine
1,									
Procedure Using a measuring	cylinder	nlace 3	0cm ³ of	distilled v	vater in 1	100cm ³ p	lastic be	aker. Stir th	e
water gently with a	•	-							
readings in the tabl									
and take the tempe your results in the			ture after	r every ha	lf a minu	ite up to t	he 4 th m	inute. Reco	rd
(a)	table III t	ociow.							
		1	1		1				
Time in (Min)	0	1/2	1	11/2	2	$ 2^{1}/2 $	3	31/2	4
Commonatura (°C)					v				

b) Given that 1 mole of C reacts with 1 mole of Sulphuric (VI) acid and the relative formula

(2marks)

(b) On the grid provided plot a graph of temperature against time. (2marks)

- (c) On the graph show the change in temperature, ΔT
- $(\frac{1}{2}mark)$

(d) Calculate the molar enthalpy of solution (ΔH_{soln}). Assume density of solution= 1.0g/cm³, specific heat capacity of the solution = 4.2jg⁻K⁻, K=39.0, N=14.0, O=16.0) (2 $^{1}/_{2}$ marks)

QUESTION 3:- QUALITATIVE ANALYSIS (16MKS)

A. You are provided with solid 1	A.	You are	provided	with	solid	F	١.
---	----	---------	----------	------	-------	---	----

You are required to identify the cations and anions in the solid.

I. Place all the **solid F** in a boiling tube and add about 10cm³ of distilled water. Shake thoroughly and then filter into a clean test tube. Retain both the filtrate and the residue for the subsequent steps.

Observations	Inferences
(1mark)	(1mark)

II.	Divide the f	filtrate int	o 4 portions.
-----	--------------	--------------	---------------

a) To the first portion, add aqueous ammonia dropwise till in excess.

Observations	Inferences
(1mark)	(1mark)

b) To the 2nd portion add 3 drops of **sodium chloride** solution.

Observations	Inferences
.1	(1
$(\frac{1}{2}mark)$	(1mark)

c	To the 3 rd	portion ac	dd about 2 di	ons of lead	(II) nitrate solution	and warm	the mixture.
· (10 the 5	portion ac	ia about 2 ai	ops of icau	(11	, mulace solution	and warm	me mixture.

Observations	Inferences
(1mark)	$(\frac{1}{2}mark)$

III (a) Scrap the residue into a clean test tube, add dilute **nitric** (v) acid until the solid dissolves. Test for any gas produced using the **wooden splint** provided.

Observations	Inferences
(1mark)	(1mark)

(b) To 2cm³ of the resultant mixture, add 2 drops of **potassium iodide** solution.

Observations	Inferences
$(\frac{1}{2}mark)$	$(\frac{1}{2}mark)$

- B. You are provided with **solid Z**. Carry out the tests below and record your observations and inferences in the spaces provided.
- a) Using a metallic spatula, ignite one half of solid Z in a Bunsen flame.

Observations	Inferences
$(\frac{1}{2}mark)$	(1mark)

- b) Place the other half of solid **Z** in a boiling tube. Add about 15cm³ of distilled water and shake well. Use the solution for the following tests.
 - i. Place 1cm³ of the solution in a test tube and determine its pH using universal indicator paper.

Observations	Inferences
,1 ,	,1 ,,
$(\frac{1}{2}mark)$	$(\frac{1}{2}mark)$

ii. To about 2cm³ of the solution in a test tube, add 3 drops of acidified potassium manganate (VII).

Observations	Inferences
(1mark)	(1mark)

iii. To 2cm³ of the solution in a test tube, add 2 drops of bromine water.

· –	Observations	Inferences
_		
	(1mark)	$(\frac{1}{2}mark)$

THIS IS THE LAST PRINTED PAGE.